Bioingegneria maggio/giugno 2022 31 [48] R.E. Hampson, D. Song, B.S. Robinson et al.: Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall, Journal of neural engineering, n. 15, 2018, 036014. [49] M.A. Nicolelis, M.A. Lebedev: Principles of neural ensemble physiology underlying the operation of brain-machine interfaces, Nature reviews. Neuroscience, n. 10, 2009, pp. 530-540. [50] S.N. Abdulkader, A. Atia, M.S.M. Mostafa: Brain computer interfacing: Applications and challenges, Egyptian Informatics Journal, n. 16, 2015, pp. 213-230. [51] B.D. Reger, K.M. Fleming, V. Sanguineti et al.: Connecting brains to robots: an artificial body for studying the computational properties of neural tissues, Artif Life, n. 6, 2000, pp. 307-324. [52] A. Karniel, M. Kositsky, K.M. Fleming et al.: Computational analysis in vitro: dynamics and plasticity of a neuro-robotic system, Journal of Neural Engineering, n. 2, 2005, S250. [53] M. Kositsky, M. Chiappalone, S.T. Alford, F.A. Mussa-Ivaldi: Brain-machine interactions for assessing the dynamics of neural systems, Front Neurorobot, n. 3, 2009, p. 1. [54] T.B. Demarse, D.A. Wagenaar, A.W. Blau, S.M. Potter: The Neurally Controlled Animat: Biological Brains Acting with Simulated Bodies, Auton Robots, n. 11, 2001, pp. 305-310. [55] T.B. DeMarse, K.P. Dockendorf: Adaptive flight control with living neuronal networks on microelectrode arrays, Neural Networks - IJCNN’05 - 2005 IEEE International Joint Conference on., vol. 3, 2005, p. 1548-1551. [56] S. Martinoia, V. Sanguineti, L. Cozzi et al.: Towards an embodied in vitro electrophysiology: the NeuroBIT project, Neurocomputing, n. 58, 2004, pp. 1065-1072. [57] A. Novellino, P. D’Angelo, L. Cozzi et al.: Connecting neurons to a mobile robot: an in vitro bidirectional neural interface, Comput Intell Neurosci, 2007, 12725. [58] J. Tessadori, M. Bisio, S. Martinoia, M. Chiappalone: Modular neuronal assemblies embodied in a closed-loop environment: toward future integration of brains and machines, Front Neural Circuits, n. 6, 2012, p. 99. [59] S. Buccelli, Y. Bornat, I. Colombi et al.: A neuromorphic prosthesis to restore communication in neuronal networks, IScience, n. 19, 2019, pp. 402-414. [60] R. George, M. Chiappalone, M. Giugliano et al.: Plasticity and adaptation in neuromorphic biohybrid systems, Iscience, 23, 2020, 101589. [61] D.V. Christensen, R. Dittmann, B. Linares-Barranco et al.: roadmap on neuromorphic computing and engineering, Neuromorphic Computing and Engineering, n. 2, 2022, 022501. [62] B.C. Wheeler: Building a brain on a chip, 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2008, p. 1604-1606. [63] M. Taketani, M. Baudry: Advances in network electrophysiology, Springer, 2010. [64] S. Weisenburger, A. Vaziri: A guide to emerging technologies for large-scale and whole brain optical imaging of neuronal activity, Annual review of neuroscience, n. 41, 2018, p. 431. [65] M. Meister, J. Pine, D.A. Baylor: Multi-neuronal signals from the retina: acquisition and analysis, Journal of neuroscience methods, n. 51, 1994, pp. 95-106. [66] K.E. Foley: Organoids: a better in vitro model, Nature Methods, n. 14, 2017, pp. 559-562. [67] K. Takahashi, S. Yamanaka: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, cell, n. 126, 2006, pp. 663-676. [68] K. Ballanyi, A. Ruangkittisakul: Brain Slices, in M.D. Binder, N. Hirokawa, U. Windhorst, Encyclopedia of Neuroscience, Springer, Berlin, 2008, pp. 483-490. [69] C. Thomas Jr, P. Springer, G. Loeb et al.: A miniature microelectrode array to monitor the bioelectric activity of cultured cells, Experimental cell research, n. 74, 1972, pp. 61-66. [70] D.A. Soscia, D. Lam, A.C. Tooker et al.: A flexible 3-dimensional microelectrode array for in vitro brain models, Lab on a Chip, n. 20, 2020, pp. 901-911. [71] J.M. Peyrin, B. Deleglise, L. Saias et al.: Axon diodes for the reconstruction of oriented neuronal networks in microfluidic chambers, Lab on a Chip, n. 11, 2011, pp. 3663-3673. [72] C.R. Gerfen: The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia, Annual review of neuroscience, n. 15, 1992, pp. 285-320. [73] A. Virlogeux, E. Moutaux, W. Christaller et al.: Reconstituting corticostriatal network on-a-chip reveals the contribution of the presynaptic compartment to Huntington’s disease, Cell reports, n. 22, 2018, pp. 110-122. [74] T.T. Kanagasabapathi, P. Massobrio, R.A. Barone et al.: Functional connectivity and dynamics of cortical–thalamic networks co-cultured in a dual compartment device, Journal of neural engineering, n. 9, 2012, 036010. [75] M. Brofiga, M. Pisano, F. Callegari, P. Massobrio: Exploring the contribution of thalamic and hippocampal input on cortical dynamics in a brain-on-a-chip model, IEEE Transact ions on Medical Robot ics and Bionics, n. 3, 2021, pp. 315-327. [76] S. Dauth, B.M. Maoz, S.P. Sheehy et al.: Neurons derived from different brain regions are inherently different in vitro: a novel multiregional brain-on-a-chip, Journal of neurophysiology, n. 117, 2017, pp. 1320-1341. [77] F.M. Benes: Neural circuitry models of schizophrenia: is it dopamine, GABA, glutamate, or something else?, Biological psychiatry, n. 65, 2009, pp. 1003-1005. [78] M. Brofiga, M. Pisano, M. Tedesco et al.: Three-dimensionality shapes the dynamics of cortical interconnected to hippocampal networks, Journal of Neural Engineering, n. 17, 2020, 056044. [79] D.A. Wagenaar, J. Pine, S.M. Potter: An extremely rich repertoire of bursting patterns during the development of cortical cultures, Bmc Neuroscience, n. 7, 2006. [80] J.W. Lee, H. Kang, Y. Nam: Thermo-plasmonic gold nanofilms for simple and mass-producible photothermal neural interfaces, Nanoscale, n. 10, 2018, pp. 9226-9235. [81] S. Yoo, S. Hong, Y. Choi et al.: Photothermal inhibition of neural activity with near-infrared-sensitive nanotransducers, ACS nano, n. 8, 2014, pp. 8040-8049.
RkJQdWJsaXNoZXIy MTA3MTUxMQ==