

Programmable Systems for Intelligence in Automobiles (Project overview)

Prof. Dr. Eng. George Dimitrakopoulos, Infineon Technologies A.G. Am Campeon 1-15, 85579, Neubiberg, DE 18.11.2020

Contents

- Overview of the project
 - Project positioning
 - Vision
 - Expected outcomes
 - Mission
 - How we work, what we have done and what results we expect
 - The PRYSTINE consortium

Positioning the project (1/2)

- EU H2020 framework
- ECSEL-2017-2 call, Research and Innovation Action (RIA)

- PRYSTINE addresses the key application "Smart mobility" and the enabling Technologies "Semiconductor Process Equipment and Manufacturing", "Cyber Physical Systems", and "Safety and Security" of the ECSEL Multi Annual Strategic Plan (MASP) 2017 document
- Grant Agreement No: 783190
- EU funding 14.8Meuros (+14.6Meuros national grants)

Positioning the project (2/2)

• Smart mobility

- Automation of vehicles aiming at fully autonomous driving
- Enabler: highly automated driving functions (ADFs)
- Major challenge (also PRYSTINE's focus area)
 - The step from SAE Level-2 (Partial automation) to SAE Levels-3 (Conditional automation) and above.

SAE Level	Name	Steering & Acceleration	Perception	Fallback	System capabilities					
		Human in cha	rge of perceptio	n						
0	No Automation	Driver	Driver	Driver	None					
1	Driver Assistance	Driver + System	Driver	Driver	Some driving modes					
2	Partial Automation	System	Driver	Driver	Some driving modes					
	System	full in charge of pe	erception - PRY	STINE focus						
3	Conditional Automation	System	System	Driver	Some driving modes					
4	High Automation	System	System	System	Some driving modes					
5	Full Automation	System	System	System	All driving modes					

The PRYSTINE vision

Overall vision

Realize Fail-operational Urban Surround perceptION (FUSION), based on robust Radar and LiDAR sensor fusion and control functions, so as to enable safe automated driving in urban and rural environments.

Therefore achieve:

1. Enhanced reliability and performance, reduced cost and power of FUSION components

2. Dependable embedded control by co-integration of signal processing and AI approaches for FUSION

3. Optimized E/E architecture enabling FUSION-based automated vehicles

4. Fail-operational systems for urban and rural environments based on FUSION

PRYSTINE expected outcomes

- Fail-operational sensor-fusion framework at component level
- Dependable embedded E/E architectures
- Safety compliant integration of Artificial Intelligence (AI) approaches for object recognition, scene understanding, and decision making within automotive applications.
- The resulting reference FUSION hardware/software architectures and reliable components for autonomous systems will be validated in numerous industrial demonstrators

PRYSTINE mission (how to realize the vision): project objectives and KPIs

O1: Components Enhanced reliability and performance, reduced cost and power of FUSION components	O2: System Dependable embedded control by co-integration of signal processing and Al approaches for FUSION	O3: Architecture Optimized E/E architecture enabling fail-operational FUSION-based automated vehicles	O4: Automated Driving Fail-operational systems for urban and rural environments based on FUSION	O5: Competitive advantage for European industry	O6: Increased user acceptance of automated driving functions
Objective 1: Enhanced	d reliability and p	erformance, cost an	d power of FUSION c	omponents	
• 25% less data	communication rec	quired compared to st	tate-of-the-art		
 30% less false 	positive detection	s compared to separa	te sensing approach		
Fail operation	al sensor compound	d vs. fail silent indivi	dual sensing approache	es	
Power reduct	ion of 25% throug	gh semiconductor m	aterial improvements	and functional con-	vergence in sensor
modules	. 1 . 110	• • •			
• Up to 30% co	st reduction and 10 st	margin improveme	of signal processing	systems	s for FUSION
Eail operation	al system approach	for ADE (SAE Leve	1.3+) vs. fail silent adv	and Ariver assistan	s in FUSION
approaches (S	$A \in I$ evels up to 2)	I IOI ADI (SAL LEVE	1 5+) vs. tali shent adva		ice system(ADAS)
 Proposed Cert 	ification Approach	for AI based sensor	fusion, diagnostic, and	control	
Objective 3: Optimize	d E/E architectur	e enabling FUSION-	based automated veh	icles	
Fail operation	al system architect	ure demonstrator for	ADF (SAE Level 3+)	vs. fail silent ADAS	S approaches (SAE
Levels to 2)	2		[×]		•••
LiDAR / RAE	OAR sensorcompou	und demonstrator			
Objective 4: Fail-oper	ational systems fo	or urban and rural e	environments based on	FUSION	
Demonstrator	s for fail-operationa	al SAE Level 3+ AD	Fs in urban environmen	ts	
Objective 5: Competit	<mark>ive advantage for</mark>	European industry			
Increasing ma advancements	rket share and reve s (O1-O4)	enue of European co	mpanies through PRYS	TINE's groundbrea	aking technological
Objective 6: Increase	d user acceptance	of automated drivin	g functions		
Increasing us advancements	er acceptance of a s (O1-O4)	utomated driving fu	nctions through PRYS	TINE's groundbrea	king technological

Objectives are reached by working in Supply Chains (SCs)

• Supply chain (SC)

- The logical / virtual combination of partner activities fitting together within a specific topic leading to a combined result (e.g., demonstrator).
- A supply chain supplies other supply chains and project activities with its results.
- Each supply chain addresses a specific PRYSTINE objective.
- 3 types of SCs
 - Technology enabler SCs (1-4)
 - develop the fundamental core technology required by other supply chains
 - Output enabler (also known as applications) SCs (5-7)
 - employ and validate the results achieved within the technology enabler supply chains.
 - Impact SCs (8-10)
 - form the basis in order to generate "European Values".

O1: Components Enhanced reliability and performance, reduced cost and power of FUSION components		O2: : Depe embedd by co-ir of : process appro. FU	System endable ded con ntegrati signal sing and aches fo ISION	trol ion i Al or	O3: Architecture Optimized E/E architecture enabling fail-operational FUSION-based automated vehicles			O4: Fail- fo envi	O4: Automated Driving Fail-operational systems for urban and rural environments based on FUSION			O5: Competitive advantage for European industry			O6: Increased user acceptance of automated driving functions					
	SC1: Components LiDAR, Radar, and safety controllers for FUSION			SC2: High performance embedded control and intelligence for FUSION		Cr3. E.il anominand F/F antipartics analyling ElfCOM		SC4: FUSION and decision making	SCS: FUSION application – heavy duty electric vehicle	SC6: FUSION application – passenger vehicle	SC7: Shared control and arbitration applications using FUSION			SC8: Novel, competitive, and fail-operational semiconductors			SC9: FUSION's impact on vehicle and road safety	SCIO: End-user acceptance of automated driving functions		

FUSION = Fail-operational Urban Surround perceptION

How we work, monitor and report: work-packages (1/2)

• WP1

- The system requirements driven by the OEMs will gradually be refined into specifications for sub-systems, modules, and components also taking into account the application constraints
- WP2
 - WP2 aims at establishing a comprehensive, indepth quantitative understanding of the subsystems that will be integrated into higher level systems and demonstrators, by performing modelling and simulation at different levels
- WP3
 - The objective of this WP3 is to develop semiconductor solutions on low-level component level. The focus will be on novel failoperational sensors and embedded control devices that will be integrated

How we work, monitor and report: work-packages (2/2)

- WP4
 - The objective of WP4 is to develop and provide embedded components, i.e. computational HW including firmware, middleware and application software executing algorithms for robust operation even under faulty conditions of individual vehicle components or the computing platform itself
- WP5
 - WP5 will Integrate and implement a failoperation system capable to detect and avoid any emergency safety risks faults
- WP6
 - WP6 will verify and validate the designed solutions.
- WP7
 - Caters for dissemination, exploitation and standardization

How we work, monitor and report: mapping of SCs to WPs and objectives

O1: CC Enhanc and pe reduct power con	omponents ed reliability erformance, ed cost and r of FUSION nponents	proc	2: System ependable edded cont o-integratio of signal ressing and proaches for FUSION	arol on Al or au	D3: Archited Optimized architectu enabling fail-operatio FUSION-ba itomated ve	tture E/E irre g onal sed chicles	O4: Au Fail-ope for u enviror	tomated D erational sy brban and ri nments bas FUSION	riving istems ural ed on	OS a	: Compe dvantage Europe: industr	etitive e for an ry	O use of driv	6: Increased rr acceptance automated ring functions
WP1: Requirements and Specifications	z		NOISION											
WP2: System Level Design	r FUSIO		ce for F						NOIS		ctors			2
WP3: Nanoelectronic Devices and Modules	ntrollers fo		d intelligen		g FUSION		vehicle		rs using FU		emiconduc		ety	ng function
WP4: Embedded Systems and Computing Algorithms	d safety cor		control and		ure enablin		Ity electric	er vehicle	application		erational s		id road safe	mated drivi
WP5: System Integration	Radar, an		embedded		architectu	n making	- heavy du	- passeng	arbitration		and fail-op		vehicle an	ce of autor
WP6: Validation, Test, and Demonstration	ints LiDAR,		formance		ational E/t	nd decisio	pplication	pplication	ontrol and		mpetitive,		impact on	r acceptan
WP7: Dissemination, Exploitation and Standarization	Compone		High perf		Fail-oper	FUSION a	FUSION a	FUSION a	Shared co		Novel, col		FUSION's): End-user
WP8: Project Management and Control	SCI:		SC2:		SG:	SC4:	SC5:	SC6:	SC7:		SC8:		SC9:	SCIO

FUSION = Fail-operational Urban Surround perceptION

How we showcase that we have reached the objectives (therefore realized the vision) (1/2)

- The **PRYSTINE** demonstrators
 - SC1
 - Innoluce, 1D LiDAR & AURIX 2G
 - Murata 2D LiDAR
 - IMEC power / sensitivity scaling
 - NXPNL, integrated System-in-Package
 - IFAG, DICE, EPOS, high-resolution Radar
 - FAU, interference mitigation, MIMO radar concept
 - NXPNL, vehicle-level health monitoring
 - Videantis, FPGA-based fail-operational signal processing
 - SC2
 - Fail-operational autonomous driving platform Drive-by-wire car (EDI): acronym Data Fusion and Fall-back
 - Passenger vehicle for low speed autonomy
 - Fail-operational AI Inference Processing
 - SC3
 - E/E architecture demonstrator for automotive electronics enabling automated driving
 - Simulation, development and validation framework for fail-operational sensor-fusion E/E architecture
 - Dynamically shaped reliable mobile communication

How we showcase that we have reached the objectives (therefore realized the vision) (2/2)

- The **PRYSTINE** demonstrators (continued)
 - SC4
 - HIL for lidar sensor data processing (Innoluce)
 - HIL for back-maneuver assist (Ford, AVLTK, VIF)
 - HIL for data fusion based VRU detection (IMEC)
 - HIL for AI based VRU detection (ITI)
 - CiThruS field test (TAU, MTS, Nokia)
 - Trajectory planning and vehicle dynamics control (Polito, CRF, Unimore)
 - Fusion of real and virtual sensor data for chassis control (Tenneco)
 - Traffic state prediction (DAT.Mobility)
 - Lab demo for Programmable Accelerator Architecture for multi-sensor data fusion and perception (TUD)
 - SC5
 - FORD Heavy Duty Truck
 - TTS Truck
 - SC6
 - Demonstration of the use-case "Traffic light time-to-green"
 - Demonstration of the use-case "VRU detection and Trajectory recognition"
 - Demonstration of the use-case "Driver monitoring and emergency manoeuvre"
 - SC7
 - (TECN): Shared control and arbitration (Level 2-3), studying driver-automation interaction and methods for vehicle authority transition (DiL Simulator)
 - (CSIC): Layered Control (Level 2-3-4), studying cooperation between a passenger car and a bus, and driver role in supervising or controlling the vehicle when requested.
 - (TNO): Highly automated vehicle (Level 3-4), study AI-based decision algorithms for urban and highway scenarios.

The PRYSTINE consortium

• 59 partners

- Project partners span across 14 European and non-European countries
- Coordinator: Infineon Technologies A.G. (DE)

• The consortium and its value chains

- Thank you very much for your attention!
- Prof. Dr. Eng. George Dimitrakopoulos
- Contact:

dimitrakopoulos.external@Infineon.com Tel: +304915173002121, +306972005781

PRYSTINE will deliver (a) fail-operational sensor-fusion framework on component level (b) dependable embedded E/E architectures (c) safety compliant integration of AI approaches for object recognition, scene understanding, and decision making

PRYSTINE has been accepted for funding within the Electronic Components and Systems For European Leadership Joint Undertaking in collaboration with the European Union's H2020 Framework Programme (H2020/2014-2020) and National Authorities, under grant agreement n° 783190.

