Smart Charging and V2X

An opportunity for the e-Mobility and Energy Industry

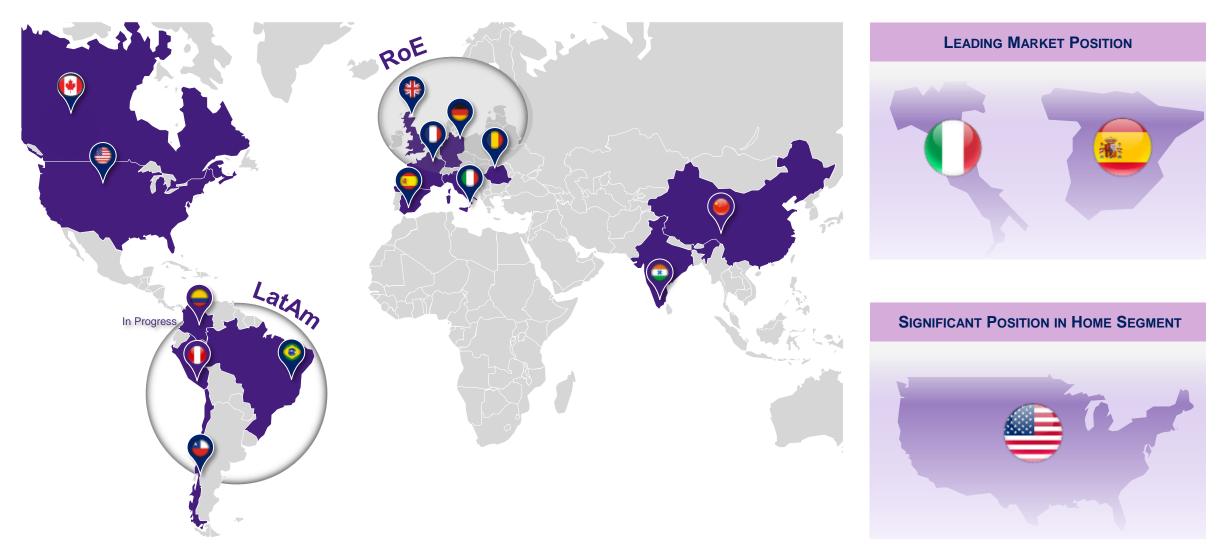
enel : way

AEIT Automotive

Enel X Way

Vision

Mission


We champion e-mobility transformation to benefit people, today and tomorrow.

We enable an easy and convenient transformation towards electric mobility for people, businesses and cities, creating simple, intuitive, turnkey solutions for all.

enel%way

The e-Mobility enabler

Global Player with First Mover Advantage and Solid CつCl ※way Track Record

EV revolution effects the grid stability, but can became an opportunity for new flexibility services

reinforce the grid*

Power issues and related flexibility services:

Level	User	Issue	Service
		Local generation	Self-consumption optimization
Behind-the- meter	End-user	Local power limitation	Dynamic Load Management
		Congestion management	ToU tariffs (Implicit DR)
		Local congestions	Local congestion management
Local	DSO	Voltage deviation	Voltage Regulation (reactive power control)
		Phase unbalance	Phase balancing
	TSO	Frequency deviation	Frequency Regulation
System-wide		Global congestions	Grid Balancing
	BRP	Unbalance management	Portfolio optimization
Grid upgrade \$,	ime	ide Flexibility (DSF) 5 times cheaper tha
DSF OPEX 💲	\$\$\$\$		5 times cheaper tha

INCREASE OF DEMAND

Main due to growth of charging points. This create majority of problem for public charging locations

PEAK EFFECTS

Mainly due to uncontrollable charging on peak hours (morning and evening) and the penetration of High Power Chargers (>150kW)

3

2

UMPREDICTABLE LOCAL BEHAVIORS

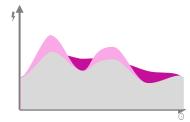
Charging sessions is unpredictable if considered as single user/site. So, stochastic approach is needed to analyse the effect at "aggregated" level

*Source: EDSO - Smart charging: integrating a large widespread of electric cars in electricity distribution grids – 2018

EVs are the most fitting asset to provide DSF, opening different value streams

Compared to battery size, average daily usage and charging power, the charging window can be easily shift to better hours (low congestion, high value). See below

Easy to "control"

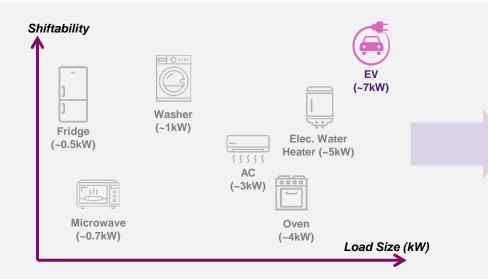

Easy to "shift"

EVs can easily modulate the power to charge and have a direct power control model (no complexity as HVAC, that require thermal model)

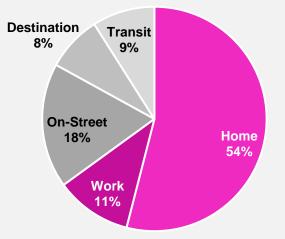
Bidirectional

Also if majority of current EVs and charging point are one-direction (only charge, a.k.a. V1G), the bidirectional capabilities (charge/discharge, a.k.a. V2X) will open majority of value and capabilities

Peak Shaving/Load Shifting


Since is **nature** and **flexibility** of use, EVs can easily do **load shifting** and **peak shaving**, enabling **cost saving/revenue flow** for local energy optimization (behind the meter) and grid services (front of the meter)

enel *** way**


Behind the meter

Local energy optimization services (load balancing, ToU charging, self consumption optimization, etc..) that normally enable savings on electricity bill Grid services (electricity and ancillary services to TSO/DSO) based on aggregated and distributed flexible asses, that enable direct revenue

Front of the meter

- 50- 70 km average daily commute requires
 10-15 kWh energy per day with 1-2 h charge time
- Majority of long duration charging sessions (over 6 hours) happen at home and/or work, but drivers usually need less than 2 hours of charging
- In the medium-long term (5-10 years), bidirectional capabilities (V2X) will unlock majority of the value, since "flexibility" provided can be up to 7 times more.

Utility Meter

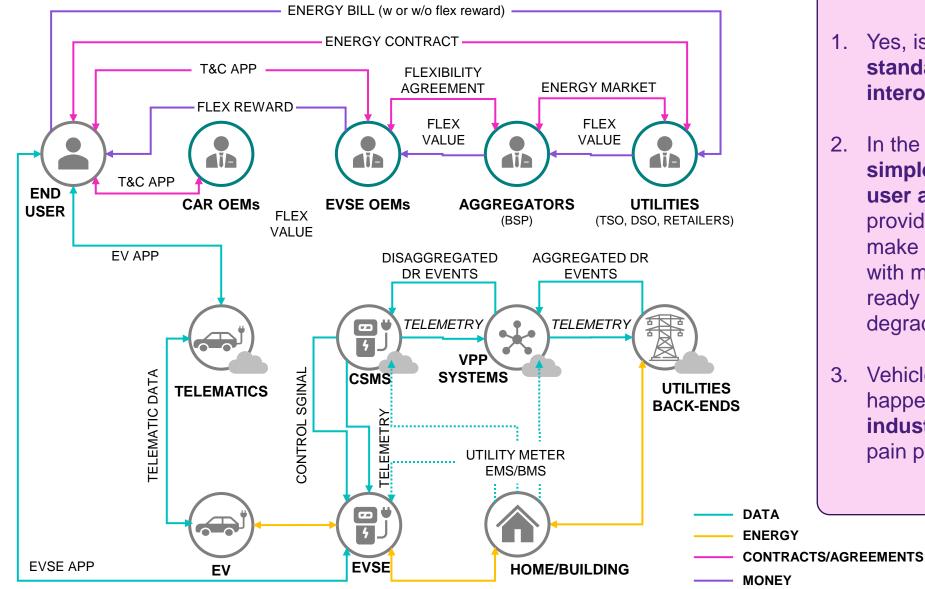
7542

O mill O

SOURCE: LCP Delta 2022

EVs will became the main assets to provide Demand Side Flexibility

enel * way


Available flexible power per technology, on average in 2030

Technology	Upward flexible power [MW]	Downward flexible power [MW]
Industrial DSR	21.731	0
BESS Behind the meter	10.850	10.850
Smart charging	48.704	16.295
V2G	25.594	25.594
Residential electric heating	32.841	73.385
Industrial electric heating	7.082	0
Industrial heating – CHP	6.355	482
District heating – CHP	10.581	3.500
Total	163,738	130,106

Activated flexibility per technology in 2030

Technology	Upward flexible power [GWh]	Downward flexible power [GWh]
Industrial DSR	1.071	0
BESS Behind the meter	637	871
Smart charging	106.286	106.266
V2G	21.009	23.764
Residential electric heating	195.532	195,532
Industrial electric heating	141	0
Industrial heating – CHP	12.697	12
District heating – CHP	59.601	14.032
Total	396.974	340.477

Extracting value from EVs is complex and involve different stakeholders

STAKEHOLDERS

SYSTEMS

ASSETS

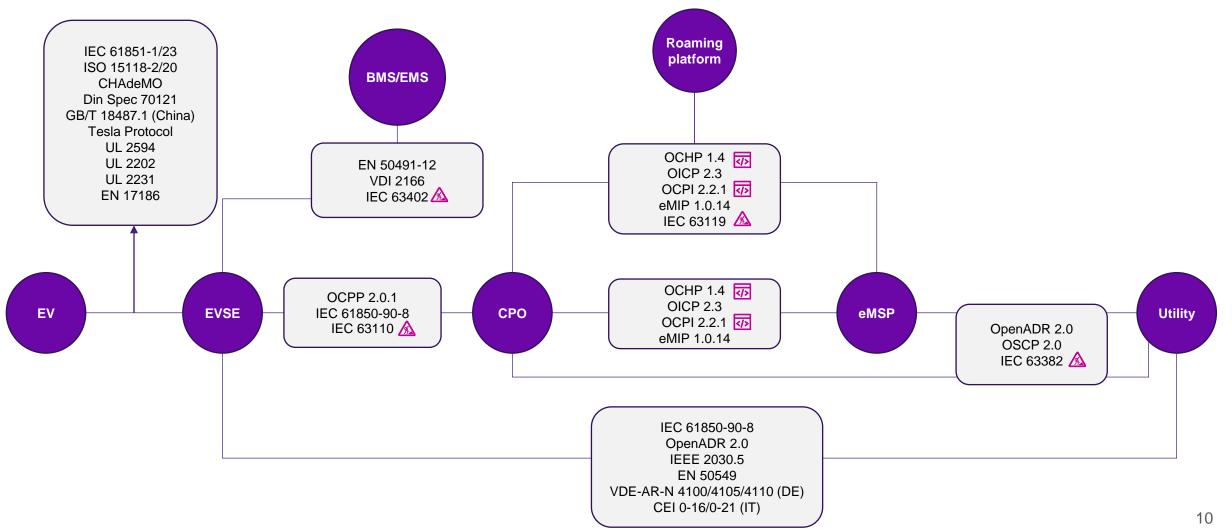
enel * way

- Yes, is a mess! We need standards to ensure interoperability to end-user
- 2. In the short term, we need simple solutions to make user aware of value to provide grid services and make it "comfortable" ("play" with my EV, but ensure EV ready on time and no battery degradation)
- 3. Vehicle Grid Integration can happen only if **we work "as industry"**, simplifying user pain points

enel*way

- **1. Standards to ensure interoperability to end-user**
- 2. Simple solutions to make user aware of value
- 3. Work "as industry"

enel*way


1. Standards to ensure interoperability to end-user

2. Simple solutions to make user aware of value

3. Work "as industry"

enel *** way**

Open Protocol simplified the market kick-off. Majority are under standardization process

Focus

enel*way

- **1. Standards to ensure interoperability to end-user**
- **2.** Simple solutions to make user aware of value
- 3. Work "as industry"

enel **% way Regulatory framework limits or unlocks the value** of the EV flexibility

		BTM Behind the meter	
		Service provided to the end-user leveraging its flexibility	Service provided to an Utility* leveraging end- user flexibility
	How extract value (use cases)	 Local energy optimization (Energy Management) → load management/balancing, self consumption optimization Implicit DR → Optimize over a ToU rates 	Service to the grid/Explicit DR
	Regulatory drivers	 Tariff regulation/Tariff component structure → ToU rates, demand charge Safety and/or electrical regulation 	Electricity market regulation (wholesale, intraday, ancillary, DSO services)
	Current barriers (main from regulatory)	 Adoption of dynamic ToU rates (both energy/demand) → Hourly/15 mins tariff linked to wholesale market AMI (Advanced Metering Infrastructure)→smart meters Submetering 	 Market participation of distributed asset Entry barriers (i.e. min size, symmetric vs asymmetric services), metering and other devices (cost) Value on the market (energy/capacity)
V1G or smart charging	One Way	 Mature at global level Good value to extract and key features to sell HW 	 Mature in some countries: UK & Nordics, US state-dependent Good feature to position on the market
V2X	Bidirectional	 Good value to extract as soon as compatible V2X EVs and EVSEs will me the standard 	 Not mature in majority of country (small and local pilots happening mainly in US and UK) Good feature to position on the market

Simple and complex "tools" to provide "price signals" to end-users. Majority need regulatory changes

enel **%way**

	What	Reasoning	How	Complexity
Implicit Flexibility	Dynamic ToU tariff for EV (submetering)	Optimize load vs market signal but without too warries on baseloads	Bill the EV charging energy on dynamic ToU rates, separately from baseloads (that can remain on flat or static ToU rates)	 Regulated market → Complex, need regulatory framework for submetering Free market → Can be easy if utility "built" as single tariff
	Price signal on connection power (demand)	Give a price signal on power based on local congestions	 Simple approach → ToU demand charge rates (i.e. Spain) Complex approach → Non-firm connections or Dynamic ToU 	Since both cases leverage a regulated market, changes on regulatory framework is needed
Explicit Flexibility	Enable DSO markets	Real DSF value is on DSO grids.	Open market framework to start to provide simple services in an aggregated and best effort mode (i.e. congestions management via a day-ahead DR signal)	 DSO is fragmentated market: common rules are needed from regulatory based on global best practices Best effort mode open possible problems on unbalances, but can be a game changer in case of DSF
	Simplify rules for TSO market access (if we want)	TSO markets was created for centralized generation (big power plant)	 Simplify access rules (i.e. qualification process, telemetry flow) Works on "real aggregated" VPP (stochastic approach) 	 TSO markets was built for power plants (built also to provide ancillary services) → redefine regulatory framework TSO and DSO coordination (not only technical, but also value)
OEMs	Clear/standardized battery warranty rules in case of V2X	Any indirect cost need to be part of the business case (i.e. EV can do only 1 cycle/day)	 Phase 1: at least OEMs need to declare "something" Phase 2: standardized rules 	 OEMs is a closed market Battery is the key component
	Vehicle Data	Data is key for VGI. Some data is still not available (i.e. AC charging) or some data is valuable when EV is not plugged in	 Define a non-discriminatory framework for data access Access cost need to fit in the specific customer segment "intention to buy" 	 No communication standard defined for Vehicle data Regulatory need to define rules (something moving on, see "Revision of the Union legislation on vehicle type approval (Regulation (EU) 2018/858) with regard to access to in-vehicle data")

enel % way

- **1. Standards to ensure interoperability to end-user**
- 2. Simple solutions to make user aware of value
- 3. Work "as industry"

To make market boom, we need to work together. CつCl ※ way Different tables exist and OEMs are welcome!

Regulatory Advocacy

smartEn is the European business association integrating the consumer-driven solutions of the clean energy transition. It make advocacy action for flexibility business.

A dedicated "E-mobility task force" is very active at European level.

Vehicle Grid Integration Council (**VGIC**) is an US advocacy group committed to advancing the role of electric vehicles and smart EV charging through policy development, education, outreach, and research.

Technology Advocacy

CharlN is a non-profit organization with over 200 members from different business around emobility. The purpose of the Charln association is the worldwide promotion and support of the Combined Charging System. In this connection the limits drawn by antitrust laws are to be observed by all members.

A dedicated **"Grid Integration" Focus Group** works on smart charging and V2X topics.

Labs & Pilots

Enel Grids has since 2021 a "Flexibility Lab", where different stakeholders work to dive on DSO flexibility topics, with 4 different lab, where is possible to test different use cases in a sendbox.

Open to all the industry. OEMs are welcome

enel **※way**

Enel X Way has a new VGI lab to test interoperability and use cases on Smart charging and bidirectional capabilities (V2X). Open free of charge to OEMs.

Terna (Italian TSO) launched a VGI lab facility in Tourin ("ESI Program") where both EVSE manufacturers and EV manufacturers can test interoperability and use cases on VGI space.

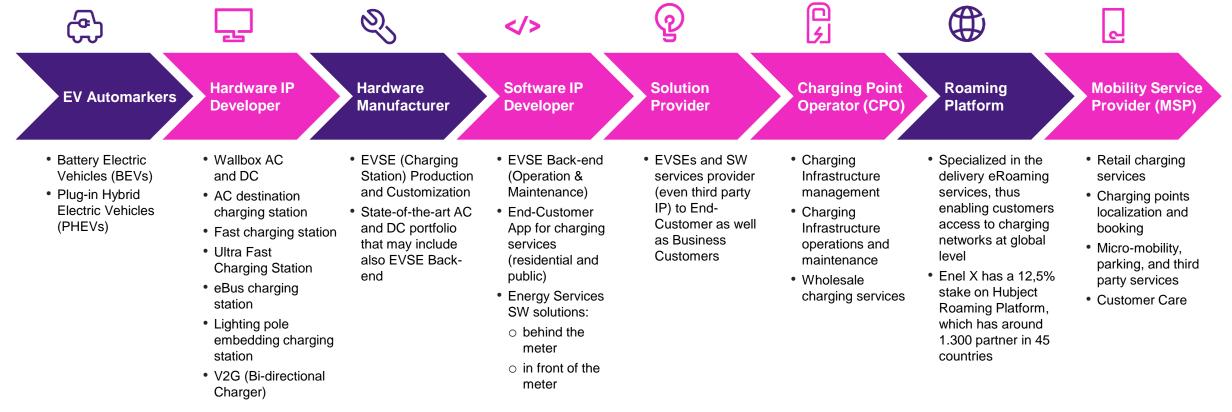
Thank you!

Davide De Michino Head of Products and Energy Services

INTERNAL

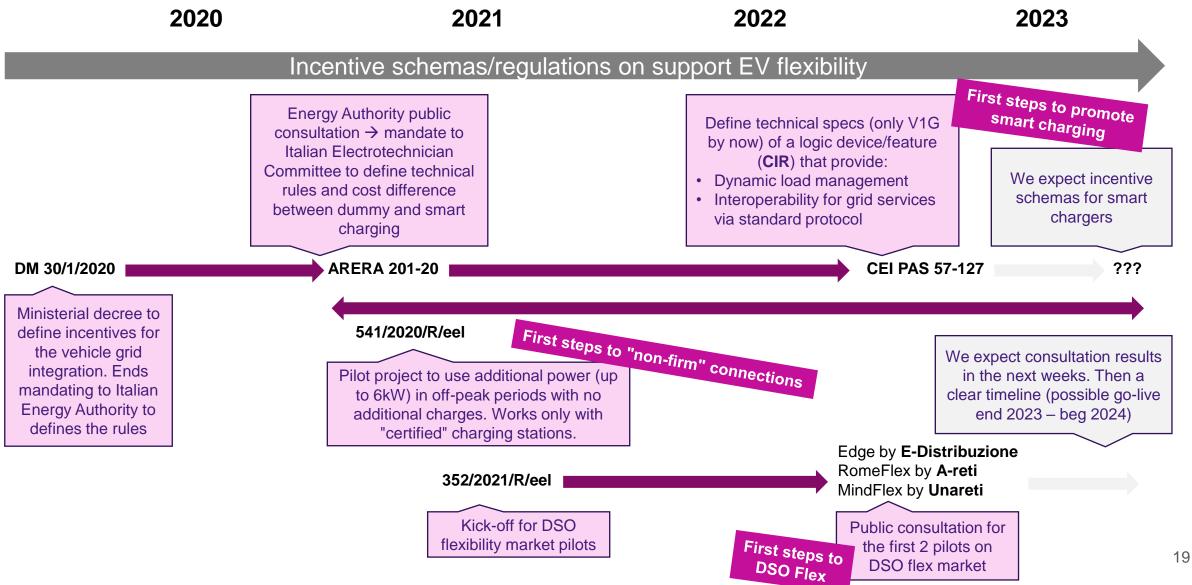
enel 🔆 way

BACKUP


enel : way

Our strategy is underpinned by an extensive positioning in the eMobility value chain

enel **% way**


At this early stage, the marketplace is not yet fully organized, however, it is possible to identify eight core strategic plays in the eMobility value chain

) Third Parties 💫 😑 enel 💥 way

Italian regulatory is working to incentivize EV Flexibility

enel **% way**

