

Project Ideas from European brokerage event of February 20-21 (Brussels) "Chips JU 2024 Non Initiative Call"

Alberto Bianchi,

KDT SRIA 2024, INSIDE Industry Association (Leonardo S.p.A)

Livio Baldi,

President Chips Mirror Group Italy

1

ECS Brokerage Event

ECS BROKERAGE

All Presentations at ECS brokerage event 2024 are available at:

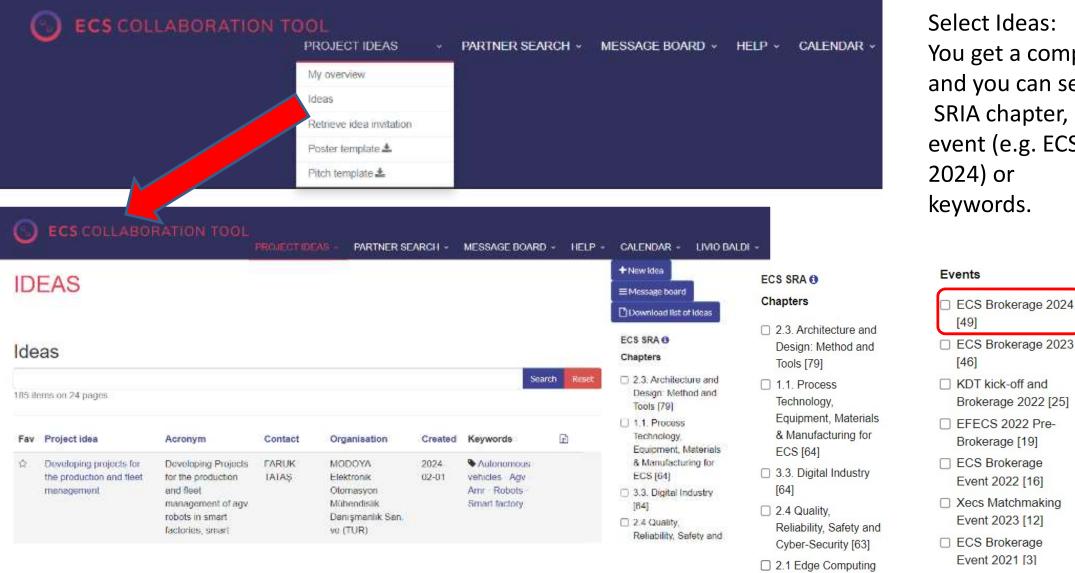
https://ecs-brokerage-event.eu/

ECS collaboration Tools can be accessed from here, or directly at:

https://ecscollaborationtool.eu/

Login at your account. If you do not have it, you can create it here.

It is FREE!



ECS Collaboration Tool

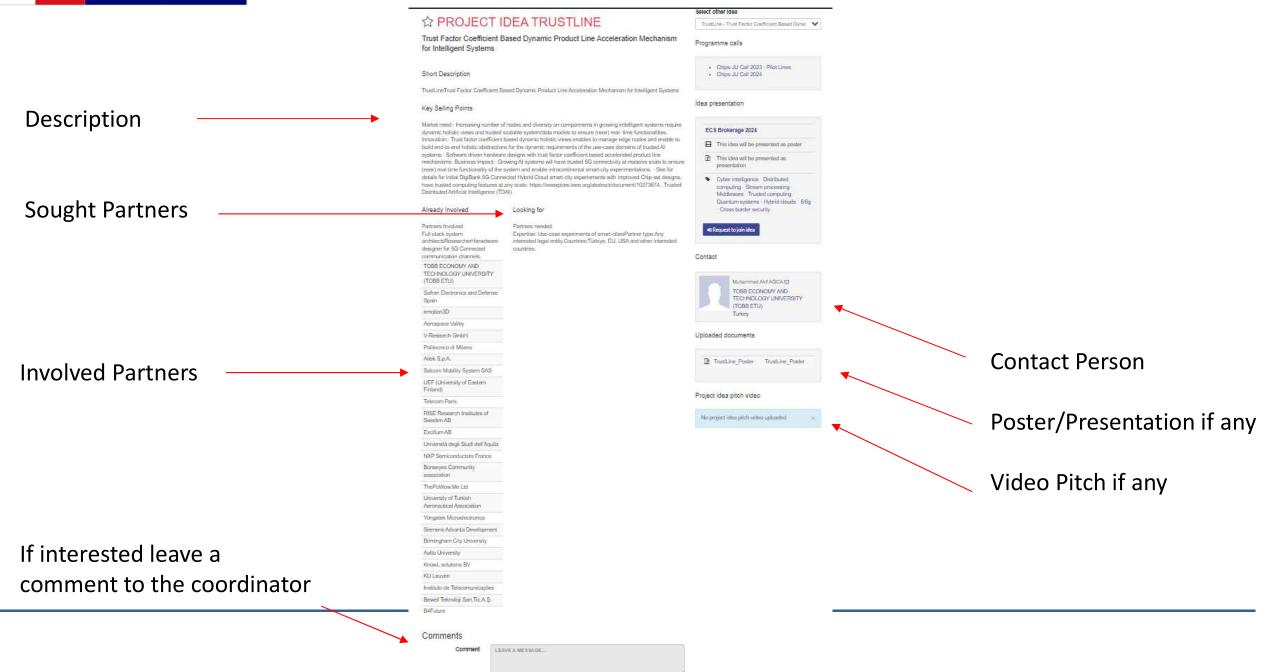
Chips JU 2024 Information Day

Select Ideas: You get a comprehensive list, and you can select by: SRIA chapter, event (e.g. ECS Brokerage 2024) or

> Ai [23]
> Artificial intelligence [13]
> Edge computing [11]
> Edge ai [10]

Keywords

- Deep learning [8]
- Machine learning [8]
- Industry 4.0 [6]
- 🗆 lot [6]
- 🗆 MI [6]
- Safety & security [6]
- Sensors [6]
- Wearahlas [6]


ECS Collaboration Tool

Chips: MIRBOR GROUP ITALY

\langle	49 items on 7 pages	>				Se	earch Reset	 1.2 Componentss, Modules and System Integration [30]
	Fav Project idea	Acronym	Contact	Organisation	Created	Keywords	[¹ _D]	 2.1 Edge Computing and Embedded AI [27]
	 ☆ Developing projects for the production and 	Developing Projects for the production and	FARUK TATAŞ	MODOYA Elektronik Otomasyon	2024- 02-01	Autonomous vehicles · Age Amr · Robots · Smart factory	~	 2.4 Quality, Reliability, Safety and Cyber-Security [22]
	fleet management	t fleet management of agv robots in smart factories, smart		Mühendislik Danışmanlık San. ve (TUR)				 1.3 Embedded Software and Beyond [20]
	getirirken, yüklerin A nokt	destekli filo yönetim sist ktasından B noktasına t ortadan kaldırmak amac	taşınması görevi acıyla yapay zeka	vinde insan müdahales a tabanlı filo yönetim si	esinden kayn sisteminin ge	sıAGV'ler depolarda iş emirlerini naklanan rota kayıplarını ve geliştirilmesi amaçlanıyor. AGV fi vardımcı olaca		 1.1. Process Technology, Equipment, Materials & Manufacturing for ECS [19]
or more detailed	☆ PROCCEPTION	Near-/In-sensor processing for	Edgars Lielamurs	Institute of Electronics and	202 <mark>4</mark> - 02-12	Sensor integration · Machine vision · Neuromorph	ohic	Systems [17]
escriptions and for		next-generation perception systems		Computer Science (LVA)	Water year	computing	inc.	3.3. Digital Industry [16]
owloading poster and/or itch	comprehension directly in	into the sensor hardwar	are, allowing dire	ect manipulation of ADC	DC readout o	that involves integrating informa or even the analog signals befor I with the characteristics of LiDA	ore	 2.3. Architecture and Design: Method and Tools [15] 3.1 Mobility [15] 2.2. Connectivity [13]
	Green Monitoring Platform	Atmospheric, social, strategic, economic and green environmental impact monitoring	Gianluca Rossi	Ro Technology srl (ITA)	1 2024- 02-14	Machine learning · Deep learning · Image processing · lot applications · Data analys	1.	 2.2. Connectivity [15] 3.6 Digital Society [11] 3.4 Health and Well- Being [10] 3.5 Agrifood and Natural Resources
	DescriptionThe partnersh	ship proposal intends to ain geographical area(2	o develop a moni 2) online content	nitoring platform that int ts coming from social n	integrates (1) I media by cit	nymGreen Monitoring PlatformP 1) environmental data and meas itizens and (3) offline ones such ve is to cont	surements	[7] 3.2. Energy [6] Evente
\sim	☆ ▲ TrustLine	Trust Factor Coefficient Based Dynamic Product Line Acceleration	Muhammed Akif AĞCA	TOBB ECONOMY AND TECHNOLOGY UNIVERSITY	Y 2024- 01-17	Cyber intelligence · Distributed computing · Streat processing · Middleware · Trusted computing	zam 🕹	ECS Brokerage 2024 [49] ECS Brokerage 2023 [46]

ECS Collaboration Tool

ECS Brokerage Event 2024

- All the 49 Project Ideas are available on the Collaboration Tool. Among these:
 - 15 Ideas have inserted a poster
 - 19 Ideas have inserted a poster and a presentation

For detailed info you can download all the material from the ECS Tool https://ecscollaborationtool.eu/

In the following we list only ideas with at least two partners or at least a poster or presentation.

Proposals (1)

Acronym	Title	Торіс	Coordinator	Consortium	Material
TrustLine	Trust Factor Coefficient Based Dynamic Product Line Acceleration Mechanism for Intelligent Systems		Muhammed Akif AĞCA TOBB UNIVERSITY (TK)	25 (2 Italian)	Poster
PATCHUS	Wearable ultrasound patches will be the next game changer in healthcare.		Mikael Sundholm Spinverse (FI)	>16	Presentation
CHIPMUNK	Chiplet based solutions accessible and affordable	for Chiplet based solutions. Exploring new avenues in advanced packaging technologies	Panos Chronis Spinverse.com Tuomas Valtonen Univ. Of Turku (FI)	16	Presentation
COBRA	COncentration for BetteR Attestation		Jo Vliegen KU Leuven (BE)	6 (1 Italiano)	Poster
CHIPPASS 5.0	Energy-efficient and Trustworthy Chip Practices strengthened with Green Circularity- and Sustainability	c .	Alper Kanak ERARGE (TK)	8 (contacted)	Presentation
DroneAl	DroneAI for Resilient Nature	5	Jari Rauma Univ Oulu (FI)	6 (only from Finland)	Poster

Proposals (2)

Title	Торіс	Coordinator	Consortium	Material
Transitioning from ADC to TDC: Enabling Energy-Efficient Communication and Sensing	Using signals with a low duty cycle and time-to-digital converter (TDC) instead for 6G. Develop novel asynchronous circuitry and unexplored signal processing methods.	Arturs Aboltins Riga University (LV)	6	Poster
Solving human-centric Digital Society challenges of the future Industry 5.0 workplace	sensor and actuator clothing, digital twin of the individual, AI tools for situation simulation, to reduce both physical and	Krisjanis Nesenbergs Institute of Electronics and Computer Science (LV)	6	Presentation
INtelligent Design of ECS and IoT systems	To create AI-based tools that will help in the rapid and flexible visualization and evaluation of multiple performance indicators for IoT systems from early design stages.	Ramiro Samano Robles ISEO (PT)	7	Presentation
Toolkit for the Production of Semiconductors in Europe	and machine, speed up experience forming while reducing	Bas Johannes van der Linden Sioux Technologies (NL)	6	Presentation
Physics-aware Generative Prognostics and Health Management for Effective Operation and Lifecycle Man		Dejiu CHEN KTH (SE)	5	Poster
Beyond Boundaries: Enabling Human- Like Performance in Diverse ROBOtic LaNDscapes		Janis Arents Institute of Electronics and Computer Science (LV)	5	Presentation

Proposals (3)

Acronym	Title	Topic	Coordinator	Consortium	Material
	Assuring Safety of Autonomous Machinery and Safety Devices incorporating Machine Learning Approaches		Rasmus Jonas Adler Fraunhofer IESE (DE)	4	Presentation
	Deep Learning Driven Ultrasound Signal Processing for Enhanced Bone Health Assessment	ultrasound signal processing algorithms, aiming to establish an	Dans Laksis Institute of Electronics and Computer Science (LV)	3	Presentation
MMRE			Maxime RUMPLER Aniah (FR)	3	Presentation
	XR based training for safety critical personnel in transportation industry	industry, particularly for safety-critical personnel, using AR/VR	Berk Kaan Çetincan Lider Teknoloji Geliştirme (TK)	3	Poster
	Improving automotive system intelligence & engineering towards safe, trustworthy vehicles		Udayanto Dwi Atmojo Aalto University (FI)	automotive cluster not spcified	Poster
	Propel cat qubits to fault-tolerant quantum computing era		Rémi de La Vieuville Alice & Bob (FR)	3	Presentation

Proposals (4)

Acronym	Title	Торіс	Coordinator	Consortium	Material
		To develop a competitive and sustainable Advanced Packaging technology that replaces slow and expensive process steps with ultra fast and low cost alternatives	Mark Luke Farrugia CITC (NL)	2	Presentation
	Design the Next Inference Unit for to accelerate Datacenter Al	Design efficient architectures for inference rather than training, provide a new way to connect/share memory and accelerators in a rack, provide technical Innovations to lower the total cost of solutions, for datacenter Al	Ke-Quang NGUYEN-PHUC Neurxcore (FR)	Design company, Foundry	Poster
		To leverage neuromorphic computing to enable AI on wearable devices to process personal data on-device. This ensures timely, meaningful interactions while enhancing privacy and system reliability.	Armands Ancans Institute of Electronics and Computer Science (LV)	2	Presentation
	Health	Integrated Multi-Sensor Systems for Environment, Safety and Health • >50% performance-, cost- and power consumption improvem. vs. state- of-the-art including real-time monitoring and remediation for indoor/in- cabin settings.	Martin Schrems i-conel (AU)	consortium coordinated by TU Braunschweig	Presentation
PADAWA		Automate design of all non-functional circuitry in a mixed-signal IC:- Test structures- ESD- Power-down circuitry- Low-power techniques (based on Aniah tool)	Maxime RUMPLER Aniah (FR)	1	Presentation
		readout or even the analog signals before conversion	Edgars Lielamurs, Institute of Electronics and Computer Science (LV)	Not specified	Poster & Presentation

Proposals (5)

Acronym	Title	Торіс	Coordinator	Consortium	Material
CHEMOC	CHiplet for European MOdular Chips	to build a set of European chiplets that include processors, accelerators, memories, etc. that will make use of standard interfaces (UCIe, BoW)	Yoan Dupret, Menta S.A.S. (F)	3	Poster
	Solving the Unsolvable with Quantum Computing		Davide Taibi, Universitùà di Oulu (FI)	QiC partners	Poster
	French Automotive and mobility Network	Advanced Charging SolutionsElectronic Components for Automotive, Automotive Powertrain- Oriented Technologies, System Modeling and Simulation	Mathieu SARAIVA, French Automotive and mobility Network (F)	6	Poster & Pitch
SAGILITY	Secure Agility	to manage the security configuration state of power systems. In particular, methods for crypto agility will be devised to ensure a migration to post-quantum cryptography (PQC).		Not specified	Poster
-	Optical interlinked communication and sensing for IoT in ocean space to outer space	micro mirror technology platform, tfor optical beam steering and beam shaping systems. This enables fast, secure and reliable free-space optical communication,	Ralph William Bernstein, SINTEF (NO)	Not specified	Poster
	Chiplet and Heterogenous Integration Simulation Software	•	Michael Dieudonne, Keysight Technologies	Not specified	Preentation

Proposals (6)

Acronym	Title	Торіс	Coordinator	Consortium	Material
IMUSES			Martin Schrems, i-conel GmbH (A)	U U	Poster & Pitch
PIEBUS	Ultra-Short pulse lasers	heterogeneous integration chips and electronics: to explore the feasibility of new technology in various chip packaging	Gediminas Raciukaitis, FTMC - Center for Physical Sciences and Technology (LTU)	Not specified	Poster & Pitch
MCDAID	Mixed-Criticality Distributed AI	Development, verification, certification and deployment of	Hans Dermot Doran, ZHAW / InES ()	J 3	Poster & Pitch

to what to pay attention?

- Novelty of the idea and appropriateness of the in/out expected TRL level
- Adherence to the Focus Topics or to the SRIA24
- Industrial and Academic strenght of the Consortium
- Italian Universities and RTOs cannot join without at least one Large Enterprise or SME
- Only for the newcomers:
 - Presence of other Italian partners to whom to ask for national rules and asking to national cluster coordinator challenges and constraints
 - Knowledge in case of absence of other Italian partners, of all the Italian rules

SMEs ACTIVE PRESENCE

All SMEs pitches can be downloaded from the event web site

https://ecs-brokerage-event.eu/

- SAT automotive, transportation, mining & medical Torino -<u>https://www.satechnology.eu</u> (PoC <u>riccardo.groppo@satechnologies.eu</u>)
- Abinsula IoT, Automotive, Agritech, CyberSecurity Cagliari Sassari, Torino, Reggio Emilia – <u>https://abinsula.com/</u> (PoC <u>katiuscia.zedda@abinsula.com</u>)
- Active Technologies AWG & PPG product portfolio Ferrara -<u>http://www.activetechnologies.it/</u> (PoC <u>ramponi@activetechnologies.it</u>)

Other not Italian SMEs with a pitch at the conference:

• Weeroc; ERAGE AND ERGTECH; Excillum; Noldus; ACORDE; Logicdev; Percipio Robotics; Verum; CISC; Artech International; Pibond; Cosylab; Nanomakers

Thank you and good luck!

For any further info do not hesitate to get in touch with us:

Livio Baldi Alberto Bianchi baldi.livio@gmail.com alberto.bianchi@leonardo.com

Chips JU 2024 Information Day

March 6, 2024