eeeee

FEDERATING EUROPEAN ECOSYSTEMS

NANO - ELECTRONICS

ELECTRONIC SMART SYSTEMS

FLEXIBLE ELECTRONICS

ECSEL Italy Day 2020

13.02.2020, Roma Alfredo Tafuri – Mesap Innovation Cluster

ABOUT 5E PROJECT

30 Months

7 | Partners

Coordinator: VDI/VDE-IT

CEA - FR

Euripides - FR

Hahn-Schickard - DE

Holst IMEC - NL

Holst TNO - NL

MESAP - IT

1 m€ Budget

4 European Countries

France, Germany, Italy, Netherland



OBJECTIVES

- 1. Support industrial perspectives of EU Electronics Ecosystems
- 2. Position Electronics as fundamental for digitisation
- 3. Foster collaboration and cross-fertilisation in Electronics

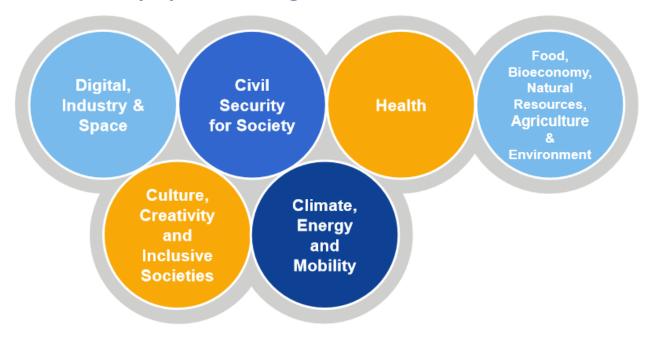
EXPECTED RESULTS

Joint Vision

Meta-roadmap

Joint strategy

Cooperation


Reach out

6 CLUSTERS AS PRIORITIES IN HORIZON EUROPE

PILLAR 2

Global Challenges & European Industrial Competitiveness: boosting key technologies and solutions underpinning EU policies & Sustainable Development Goals

Commission proposal for budget: € 52.7 billion

6 CLUSTERS AS PRIORITIES IN HORIZON EUROPE

PILLAR 2

5E POSITION – ALIGNMENT OF ACTIVITY WITH THE 6 CLUSTERS

Opportunities are clearly present in:

- Topics where there is ongoing activity in line with the cluster's areas of intervention
- Topics with potential for the cluster's areas of intervention that are not yet addressed, either in Europe or elsewhere

Clusters in 'Global Challenges and European Industrial Competitiveness'

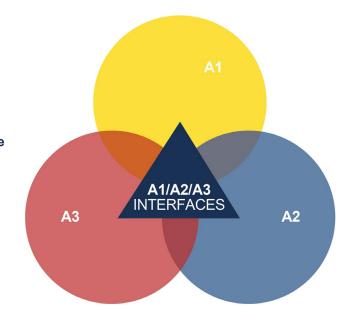
Clusters	Areas of intervention	
Health	Health throughout the life course Non-communicable and rare diseases Tools, technologies and digital solutions for health and care, including personalised medicine	Environmental and social health determinants Infectious diseases, including poverty-related and neglected disease Health care systems
Culture, creativity and inclusive society	Democracy and Governance Social and economic transformations	Culture, cultural heritage and creativity
Civil security for society	Disaster-resilient societies Protection and Security	Cybersecurity
Digital, Industry and space	 Manufacturing technologies Advanced materials Next generation internet Circular industries Space, including Earth Observation Emerging enabling technologies 	 Key digital technologies, including quantum technologies Artificial Intelligence and robotics Advanced computing and Big Data Low-carbon and clean industry Emerging enabling technologies
Climate, Energy and Mobility	 Climate science and solutions Energy systems and grids Communities and cities Industrial competitiveness in transport Smart mobility 	 Energy supply Buildings and industrial facilities in energy transition Clean, safe and accessible transport and mobility Energy storage
Food, bioeconomy, natural resources, agriculture and environment	 Environmental observation Agriculture, forestry and rural areas Circular systems Food systems 	Biodiversity and natural resources Seas, oceans and inland waters Bio-based innovation systems in the EU Bioeconomy

ELECTRONICS IS A TRANSVERSAL ENABLER

Electronics supports a multitude of key enabling technology breakthroughs from 5G and Digitalization to the Internet of Things and Artificial Intelligence (to name a few).

This will lead to a next generation of solutions that can build on Europe's expertise in:

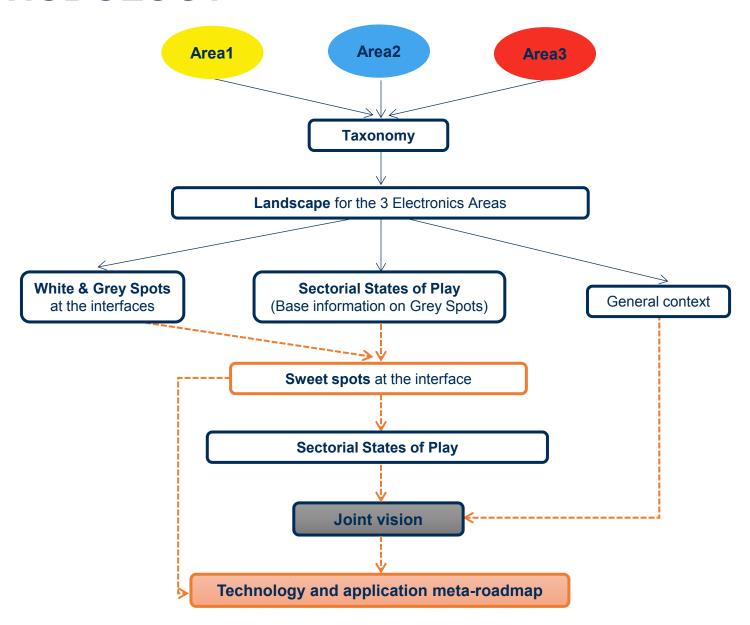
Area 1
NanoElectronics


NE

Area 2
Flexible & Wearable
Electronics

Area 3
Electronics
Smart Systems

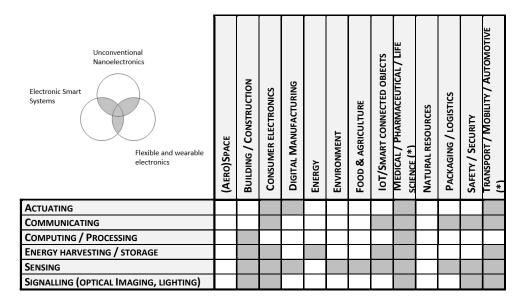
What is the added value of the interfaces?


→ Is there value in complementarity/synergy between the areas?

How can Europe benefit from its position in each of the three areas?

→ What is needed to get beneficial interaction between the ecosystems?

METHODOLOGY



OUTPUT

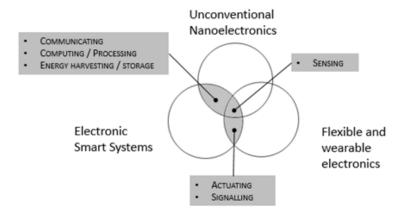
- 11 Sectorial States of Play (SSPs) for each Sector and for all relevant Functionalities
 - → Focus on Technologies and Applications
- 11 Fact Sheet for each Sectorial States of Play (SSPs)
 - → Technologies & Applications
 - → Challenges & Opportunities
- 33 Grey Spots
- 45 White Spots

OUTPUTEXAMPLE OF LANDSCAPE/ SSPs

eeeee

Sectorial State of Play (SSP)

ENVIRONMENT


	☐ (Aero)Space
	☐ Building / Construction
	☐ Consumer electronics
	☐ Digital Manufacturing
	☐ Energy
	☐ Environment
OTHER Application fields	☐ Food & agriculture
OTHER Application fields	☐ IoT/Smart connected objects
	☐ Natural resources
	☐ Packaging / logistics
	☐ Safety / Security
	☑ Transport / Mobility / Automotive
	☐ Other (specify)
	☑ Unconventional nanoelectronics
Area	☐ Flexible and wearable electronics
	NEREID Roadmap
	 InSSIght Videos
Sources	Smart Systems Knowledge Gateway
	Smart Systems Integrated® Trademark Products
	Products

1 INTRO	DUCTION	3
2 TECHN	IOLOGIES	4
2.1 Ac	tuating	4
2.1.1	Area 2	4
2.1.1	Area 3	4
2.2 Co	mmunicating	5
2.2.1	Area 1	5
2.2.2	Area 2	6
2.2.3	Area 3	6
2.3 En	ergy harvesting	6
2.3.1	Area 1	6
2.3.2	Area 2	7
2.3.3	Area 3	7
2.4 Se	nsing	7
2.4.1	Area 1	7
2.4.2	Area 2	7
2.4.1	Area 3	8
2.1 Sig	nalling	8
2.1.1	Area 1	8
2.1.2	Area 2	8
2.1.3	Area 3	8
3 APPLIC	CATIONS	10
3.1 Ma	in: Consumer electronics	10
3.1.1	Area 2	10
3.1.2	Area 3	10
3.2 Oth	ner: IoT/Smart connected objects	16
3.2.1	Areas 1,2,3	16
3.3 Oth	ner: Medical / Pharmaceutical / Life science	16
3.3.1	Areas 1, 2, 3	16
3.4 Oth	ner: Safety / Security	17
3.4.1	Areas 3	17
3.5 Oth	ner: Automotive / Mobility / Transport	18
3.5.1	Area 2	18

OUTPUTEXAMPLE OF SSPs FACT SHEETS

4.9 MEDICAL / PHARMACEUTICAL / LIFE SCIENCE

M1 (ACTUATING): Efficient, safe and integrated actuating to improve healthcare outcome and assist professionals with advanced automation and HMI

M2 (Communicating): High-performance and secure communication building blocks to increase autonomy and efficiency of electronic devices intended for medicine and Healthcare

M3 (COMPUTING / PROCESSING): Advanced hardware/software processing for in-depth analysis of large and complex health-related datasets to improve decision-making and outcome of healthcare

M4 (ENERGY HARVESTING / STORAGE): Combining energy harvesting, storage and efficiency to power complex, autonomous and interconnected medical & healthcare devices

M5 (Sensing): Disruptive & high-performance sensing capability as key enabler for Digital Healthcare and Well-being

M6 (SignalLing): Advanced Signalling for immersive visualisation tools to improve interfaces with and proficiency of medical professionals

M3: Advanced hardware/software processing for in-depth analysis of large and complex health-related datasets to improve decision-making and outcome of healthcare

The large number of health-relevant parameters and the trend towards personalised medicine makes *BigData* a key topic in healthcare. The ever increasing amount of data for effective decision-making in diagnoses, treatments and rehabilitations requires advanced computing. Even if a strong focus is set on software, the heterogeneity of data and devices, the need for immediate processing and data safety also require advanced hardware.

Technologies / Value:

- Chip design & hardware for high-performance computing, Artificial Intelligence on chip;
- · Advanced memory modules for knowledge based tools;
- Machine-learning, pattern recognition, prediction.

Applications:

- Close-loop systems for partly or fully-automated tasks (robotics, prosthesis, monitoring):
- · Sensors and data fusion (imaging, diagnostics);
- Preventive & predictive medicine;
- Advanced in-silico & pharmacokinetic models (simulation, organ-an-chip);
- Advanced HMI.

Challenges:

- Scales and variety in data, devices and standards represent a major challenge, notably for processing time and "embeddability":
- Safety, security, reliability: data processing shall be at any point of the process guaranteed safe, secure and reliable;
- Ethical & acceptance aspects, notably regarding reliability and liability of decisions made by AI.

<u>Coupling with other functionalities</u>: Computing processing is a fundamental chain-link between sensing and actuating in order to adapt actuation to the situation (close-loop, monitoring, robotics), but as central unit, it has connections to all other functionalities.

Opportunities:

- Digitising healthcare and access to new health-relevant big data (genome or behaviour for instance) to develop Al-embedded chips to improve decisionmaking or automation in healthcare
- 2. Coupling with well-being and consumer electronics opens up new markets

VALIDATION PATHS

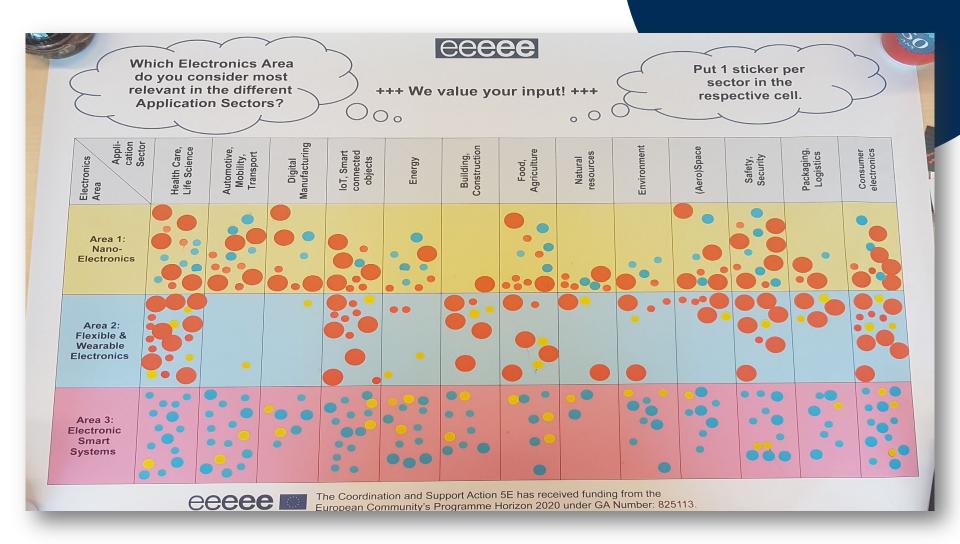
33 Spots showing activities from 2 or more areas

- → More validation of titles and fact sheets
- Identification of "Sweet Spots" for collaboration

Joint Vision of electronics ecosystems

→ Beyond Sweet Spots

HOW

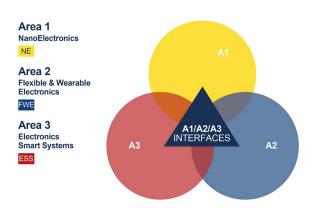

→5E Workshops and Online survey

INTERFACE GAME

HOT/COLD TOPICS

Validation of Grey Spots relevance Check whether White Spots are truly white

150+ Experts



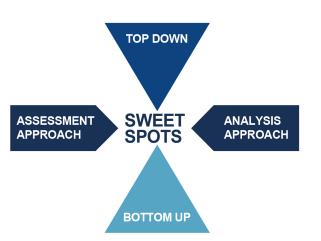
	BUILDING / CONSTRUCTION	HOT Topic	COLD Topic
B1	High power and real-time computing facilities to support planning, construction, use and maintenance of buildings		
B2	Ubiquitous and reliable energy supply and harvesting technologies to achieve efficient construction, use and maintenance of buildings		
В3	Low power and energy autonomous sensing systems and IoT networks to monitor buildings with respect to their current status (structural health, user behaviour, occupancy, abrasion etc.)		
B4	Increase of security and comfort of users of buildings by smart signalling solutions		
	CONSUMER ELECTRONICS		
C1	Actuating as a key functionality for enhancing Human Machine Interfaces (HMI), product value and enhancing users experience		
C2	Independent high-speed connectivity and low power communication for trusted nomad consumer solutions		
C3	Low cost, reliable and recyclable energy harvesting & storage solutions for high volume consumer electronics markets		
C4	Solutions for reliable and sensitive multi-sensing and data fusion/exploitation algorithms for signals dynamic management		
C5	Signalling displays compatibility for sustainable manufacturing in Europe		
<u>ځ</u> ک	DIGITAL MANUFACTURING		
D1	Actuating as key functionality for safe, efficient and optimised production processes in industry 4.0		
D2	Next generation sensor systems for safe, efficient, optimised and self-enabled manufacturing		
	ENERGY		
N1	High yield energy harvesting approaches for replacing or reducing primary energy uses		
N2	Flexible energy storage solutions with extended systems lifetime and multi-uses, including secondary use		
	ENVIRONMENT		
E1	Gas, pollutant, particle and waste monitoring solutions for healthy and safe working & living environments		
	FOOD & AGRICULTURE		
F1	Sensing for quality, safety and security tracing & monitoring along food value chains		


<u></u>	IOT/SMART CONNECTED OBJECTS	
11	Efficient and secure protocols for high-data transmission rate of IoT devices	
11	Sustainable energy harvesting and energy storage solutions for low-power and autonomous IoT devices	
13	Multi-sensing capability to monitor complex environment via extended networks of connected devices	
S	MEDICAL / PHARMACEUTICAL / LIFE SCIENCE	
M1	Efficient, safe and integrated actuating to improve healthcare outcome and assist professionals with advanced automation and HMI	
M2	High-performance and secure communication building blocks to increase autonomy and efficiency of electronic devices intended for medicine and Healthcare	
M3	Advanced hardware/software processing for in-depth analysis of large and complex health-related datasets to improve decision- making and outcome of healthcare	
M4	Combining energy harvesting, storage and efficiency to power complex, autonomous and interconnected medical & healthcare devices	
M5	Disruptive & high-performance sensing capability as key enabler for Digital Healthcare and Well-being	
M6	Advanced Signalling for immersive visualisation tools to improve interfaces with and proficiency of medical professionals	
	PACKAGING / LOGISTICS	
P1	Secure data/information wireless transmission in packaging/labels for goods interconnectivity and e-services	
P2	Multi-sensing, data fusion and management in packaging/labels for goods interactivity and e-services	
	SAFETY / SECURITY	
S1	Secure data transfer technologies for flexible and adaptable IoT systems to enable trusted solutions in data communication, across wireless standards and applications	
S2	Sensors systems with a "trusted label" for protection of people and goods to be easily integrated into products	
S3	Creating visibility or convey information as informative or preventive action to promote effective operation and physical safety	
	TRANSPORT / MOBILITY / AUTOMOTIVE	
T1	Seamless integration of actuators in car interiors for human machine interaction	
T2	Technologies to secure data transfer and enable trusted solutions for people and information in car2car communicating for autonomous / self-driving vehicles	
Т3	Low-power loss and energy harvesting for emission and CO ₂ reduction in electrical driving	
T4	Novel sensors to act on changing situations in surrounding, varying from traffic, weather, to assist in ADAS (autonomous driving assistance system), safety and power consumption	
T5	Seamless integration of displays for human machine interaction and signalling	

RANKING OF RELEVANCE

Absolute difference HOT/COLD

Of European Electronics Ecosystems


Based on convergence and cross-fertilisation between electronics areas → Validation and ranking of 33 opportunities Identification of additional opportunities

4 Community events
2 Workshops at EFECS and OE-A

2 Workshops at EFECS and OF

1 Online Survey

150+ STAKEHOLDERS INVOLVED 3 VALIDATION PATHS

SWEET SPOTS

Opportunities with the highest promises

TOP10 OPPORTUNITIES

WOULD YOU LIKE TO LEARN MORE? SCAN ME

33 OPPORTUNITIES

Fact Sheets including

Title

Technologies

Applications

Challenges
Opportunities

→ DISCOVER MORE ON www.5e-project.eu

6 FUNCTIONALITIES

13 APPLICATION SECTORS

11 SECTORIAL STATES OF PLAY

Actuating
Communicating

Computing/Processing

Energy Harvesting/Storage

Sensing

Signalling

(Aero)Space

Building/Construction

Consumer Electronics
Digital Manufacturing

Energy

Energy

→ Food & Agriculture

IoT/Smart Connected Objects

Medical/Pharmaceutical/Life Science

Natural Resources

Packaging/Logistics

Safety/Security

Transport/Mobility/Automotive

└→ Landscape Analysis

Extraction of opportunities at the interfaces of at least 2 electronics areas

NEXT STEPS

Identification of **Sweet Spots** for collaboration and cross-fertilisation between the three electronics areas, and based on this to define a **Joint Vision** and a **Roadmap** for the European Electronics Industry that will lead to:

- widening the uptake & exploitation of key technologies across sectors and markets;
- combining electronics technologies for Smarter Electronics Systems and new products;
- truly benefit from hybrid integration based on joint development from components to systems by the three eco-systems;
- identification of required actions, support and cooperation to meet the great challenges and timescales to reach the Vision.

PROJECT CONTACT

Coordinator

VDI/VDE-IT | Petra Weiler: petra.weiler@vdivde-it.de

MESAP CONTACTS

Alfredo Tafuri: a.tafuri@advisor.mesap.it

Serena Zerbinati: <u>s.zerbinati@mesap.it</u>

Fabrizio Fallarini: f.fallarini@mesap.it

